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Abstract

We consider a linear elastic composite medium\ which consists of a homogeneous matrix containing
aligned ellipsoidal uncoated or coated inclusions arranged in a doubly periodic array and subjected to
inhomogeneous boundary conditions[ The hypothesis of e}ective _eld homogeneity near the inclusions is
used[ The general integral equation obtained reduces the analysis of in_nite number of inclusion problems
to the analysis of a _nite number of inclusions in some representative volume element "RVE#[ The integral
equation is solved by a modi_ed version of the Neumann series^ the fast convergence of this method is
demonstrated for concrete examples[ The nonlocal macroscopic constitutive equation relating the cell
averages of stress and strain is derived in explicit iterative form of an integral equation[ A doubly periodic
inclusion _eld in a _nite ply subjected to a stress gradient along the functionally graded direction is
considered[ The stresses averaged over the cell are explicitly represented as functions of the boundary
conditions[ Finally\ the employed of proposed explicit relations for numerical simulations of tensors descri!
bing the local and nonlocal e}ective elastic properties of _nite inclusion plies containing a simple cubic
lattice of rigid inclusions and voids are considered[ The local and nonlocal parts of average strains are
estimated for inclusion plies of di}erent thickness[ The boundary layers and scale e}ects for e}ective local
and nonlocal e}ective properties as well as for average stresses will be revealed[ Þ 0888 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

The problem to be discussed is the determination of the overall response of linear elastic materials
composed of a homogeneous matrix containing identical coated inclusions arranged in some
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doubly periodic array[ The doubly periodic structure of composite materials is very attractive both
because it provides the estimation of interaction e}ects for an in_nite number of inclusions and
because the breakdown of the periodicity in one direction leading to such structures can be
considered as a model of so!called Functionally Graded Materials "FGMs#[ FGMs are the
materials which feature gradual compositional or microstructural transitions\ being designed to
deliver in an optimal way certain functional performance requirements that vary with location
within a part[ The FGMs approach is\ by its own intrinsic nature\ far more multidisciplinary than
almost any other undertaking in material research[ In particular cases of the above problems it is
possible to use di}erent generalizations of the known methods for triply periodic structures "see
e[g[ Kuznetsov\ 0880^ Buryachenko and Parton\ 0881^ Rodin\ 0882^ Kushch\ 0886^ Nemat!Nasser
and Hori\ 0882#[

At the present time the homogenization theory for composites with regular structure is developed
in detail "references can be found e[g[ in Sanchez!Palencia\ 0879^ Bakhvalov and Panasenko\ 0878^
Kalamkarov and Kolpakov\ 0886#[ Most of these works are based on the use of multivariable
asymptotic techniques[ If the unit cell is much smaller than the size of the structure the variation
of stress and strain states from cell to cell will be small[ For numerical solutions of homogenization
theory the number of the inclusions in the unit cell can be increased signi_cantly by increasing the
size of the unit cell as compared with inclusion size^ so Nakamura and Suresh "0882# considered
29 and 59 _bers in one unit cell[ In particular\ the modeling of FGM\ Weissenbek et al[ "0886#
considered a unit cell as a column containing an inclusion set in one side of the column only[
Pindera et al[ "0884# used an analogous scheme with an approximate representation of the local
stress states by second!order polynomials in the neighborhood of each inclusion[ In practice\
however\ components may be subjected to nonuniform stress states\ such as in a circumferential
reinforced ring subjected to radial turbine blade loads and centrifugal inertial loads "see e[g[ Du et
al[\ 0884#[

At the same time for random structure composites it is well known\ that the eventual abandon!
ment of the so!called hypothesis of statistically homogeneous _elds leads to a nonlocal coupling
between statistical averages of the strain ðoŁ"x# and stress ðsŁ"x# tensors when the statistical
average stress is given by an integral of the _eld quantity weighted by some tensorial function\ i[e[
the nonlocal e}ective compliance M�]

ðoŁ"x# � Ð M�"x\ y#ðsŁ"y# dy[ "0[0#

In the consideration of dispersed media with both regular and random structures this approach
makes intuitive sense since the stress at any point will depend on the arrangement of the surrounding
inclusions[ Therefore\ the value of the statistical average _eld for random structures "or the values
of the average _eld over the cell for periodic structures# will locally depend on its value at the other
points in its vicinity[ This is especially true if the inclusion number density varies over distances
that are comparable to the particle size[ The method of Fourier transforms has been much
investigated in nonlocal micromechanics of random structure composites and was used with some
modi_cations by Beran and McCoy "0869#\ Buryachenko and Lipanov "0881#\ Drugan and Willis
"0885#\ Khoroshun "0885#\ Buryachenko "0887#[ The same approach can be employed for the
nonlocal analysis of triply periodic structures "see e[g[ Buryachenko\ 0887#[ Nevertheless\ using
the Fourier transform method in the case of doubly periodic structures leads to the principal
di.culties because the general integral equation being analyzed in the current paper is not a
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convolution equation\ and therefore the standard Fourier transform properties for the transform
of both convolution integrals and derivatives cannot be used[ For elimination of these di.culties
we will propose modi_ed versions of the iteration method[

The outline of the paper is as follows[ In Section 1 we present the basic equation and geometrical
description of the composite structure\ and two kinds of averaging operators[ In Section 2 we
derive a general integral equation of elasticity of general doubly periodic structures subjected to
inhomogeneous boundary conditions^ the equations obtained reduce the analyses of problems
in_nite numbers of inclusions to the analysis of a _nite number of inclusions[ This equation is
simpli_ed for particular cases of triply periodic structures under homogeneous boundary conditions
and for inclusion _elds bounded in one direction[ In order to simplify the general integral system
one uses the e}ective _eld hypothesis[ In Section 3 the Fredholm integral equation of the second
kind obtained in the paper is solved by a modi_ed version of the iteration method of the Neumann
series^ the fast convergence of this method is demonstrated for concrete examples[ Once the average
e}ective _eld is obtained\ the e}ective local and nonlocal constitutive relations of the composite
material are calculated via the homogenized relation in Section 4[ A doubly periodic inclusion _eld
in a _nite ply subjected to a stress gradient along the functionally graded direction is considered
in Section 5[ The stresses averaged over the cell are explicitly represented as functions of the
boundary conditions[ Finally\ in Section 6 we employ the proposed explicit relations for numerical
simulations of tensors describing the local and nonlocal e}ective elastic properties of _nite inclusion
plies containing a simple cubic lattice of rigid inclusions and voids[ The local and nonlocal parts
of average strains are estimated for inclusion plies of di}erent thickness[ The boundary layers and
scale e}ects for e}ective local and nonlocal e}ective properties as well as for average stresses will
be revealed[

1[ Preliminaries

1[0[ Basic equations

The paper discusses a certain representative mesodomain w with a characteristic function W
containing a doubly periodic set X �"vi# of inclusions vi with characteristic functions Vi

"i � 0\ 1\ [ [ [#[ At _rst no restrictions are imposed on the elastic symmetry of the phases or on the
geometry of the inclusions[ It is assumed that the inclusions can be grouped into the component
v"0# with identical mechanical and geometrical properties[ The local strain tensor o is related to the
displacements u via the linearized strainÐdisplacement equation

o � 0
1
ð9 & u¦"9 & u#TŁ[ "1[0#

Here & denotes tensor product\ and "=#T denotes matrix transposition[ The stress tensor s\ satis_es
the equilibrium equation "no body forces acting#]

9s � 9[ "1[1#

Stresses and strains are related to each other via the constitutive equations

s"x# � L"x#o"x#¦a"x# or o"x# � M"x#s"x#¦b"x#[ "1[2#
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L"x# and M"x# 0 L"x#−0 are the known phase sti}ness and compliance fourth!order tensors\ and
the common notations for scalar products have been employed] Lo � Lijklokl\ b"x# and
a"x# 0 −L"x#b"x# are second!order tensors of local eigenstrains and eigenstresses " frequently
called transformation _elds#\ respectively\ which may arise by thermal expansion\ phase trans!
formation\ twinning and other changes of shape or volume of the material[ All tensors f

"f � L\ M\ a\ b# of material properties are decomposed as f 0 f"9#¦f0"x#[ f is assumed to be constant
in the matrix v"9# � w:v and is an inhomogeneous function inside the inclusions]

f"x# � 6
f"9# for x $ v"9#\

f"9#¦f"k#
0 "x# for x $ v"k#[

"1[3#

Here and in the following the upper index "k# numbers the components and the lower index i
numbers the individual inclusions^ v 0 k v"k# 0 k vi\ "k � 0\ 1\ [ [ [ \ N^ i � 0\ 1\ [ [ [ #[

We assume that the phases are perfectly bonded\ so that the displacements and the traction
components are continuous across the interphase boundaries[ We take nonuniform traction bound!
ary conditions for the mesodomain w

s9"x#n"x# � t"x#\ x $ 1w\ "1[4#

where t"x# is the traction vector at the external boundary 1w\ n is its unit outward normal\ and
s9"x# is a given symmetric tensor\ representing the macroscopic stress state in the mesodomain w
if the boundary conditions "1[4# is a homogeneous one] s9"x# 0 const[\ x $ 1w[ It is assumed that
the points under consideration are not close to the boundary 1w[

1[1[ Geometrical description of the composite structure

It is assumed that the representative mesodomain w contains a statistically large number of
inclusions vi W v"0# "i � 0\ 1\ [ [ [ #[ We now consider a doubly periodic set X of ellipsoidal inclusions
with identical shape\ orientation and mechanical properties[ Suppose ei "i � 0\ 1\ 2# are linearly!
independent vectors\ so that we can represent any node m $ L

xm � m0e0¦m1e1¦f "m2#e2\ "1[5#

where m �"m0\ m1\ m2# are integer!valued coordinates of the node m in the basis ei which are equal
in modulus to =ei=\ and f "m2#−f "m2¦0# $ const[ In the plane f "m2# � const[ the composite is
reinforced by periodic arrays Lm2

of inclusions in the direction of the e0!axis and the e1!axis[ The
type of the lattice Lm2

is de_ned by the law governing the variation in the coe.cients mi "i � 0\ 1#\
and also by the magnitude and orientation of the vectors ei "i � 0\ 1#[ In the functionally graded
direction e2 the inclusion spacing between adjacent arrays may vary " f "m2#−f "m2¦0# $ const[#[
For a doubly!periodic array of inclusions in a _nite ply containing 1ml¦0 layers of inclusions we
have f "m2# 0 9 at =m2= × ml "see Fig[ 0#^ in more general cases of doubly periodic structures
f "m2# $ 9 at m2 : 2�[ To make exposition more clear we will assume that the basis ei is an
orthogonal one and the axes ei "i � 0\ 1\ 2# are directed along axes of global Cartesian coordinate
system "these assumptions are not obligatory#[

The composite material is constructed using the building blocks or cells] w � k Vm\ vm W Vm[
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Fig[ 0[ Schematic representation of the doubly periodic inclusion ply[

Hereafter the notation fV"x# will be used for the average of the function f over the cell x $ Vi with
the center xV

i $ Vi]

fV"x# � fV"xV
i # 0 n"x# gVi

f"y# dy\ x $ Vi\ "1[6#

n"x# 0 0:VÞi is the number density of inclusions in the cell Vi[
Let Vx be a {moving averaging| cell with the center x and characteristic size aV � 2zVÞ \ and

let for the sake of de_niteness j be a random vector uniformly distributed on Vx whose value at
z $ Vx is 8j"z# � 0:VÞ x and 8j"z# 0 9 otherwise[ Then we can de_ne the average of the function f

with respect to translations of the vector j

ðfŁx"x−y# �
0

VÞ x gVx

f"z−y# dz\ x $ Vi[ "1[7#

Among other things {moving averaging| cell Vx can be obtained by translation of a cell Vi and can
vary in size and shape during the motion from point to point[ Clearly\ contracting the cell Vx to
the point x occurs in passing to the limit ðfŁx"x−y# : f"x−y#[ To make the exposition more clear
we will assume that Vx results from Vi by translation of the vector x−xV

i ^ it can be seen\ however\
that this assumption is not obligatory[
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By way of illustration let us consider the case of triply periodic structures under the uniform
boundary conditions]

f "m2#−f "m2¦0# 0 const[\ [m2\ "1[8#

s9"x# � s9 0 const[\ "1[09#

and let f be governed by the boundary condition "1[09# " for example f 0 s#[ Clearly for homo!
geneous boundary conditions "1[09#\ sV"x# by "1[6# is an invariant with respect to the cell number
i and sV"x# � ðsŁx"x# � const[\ [x $ Vi W w "if Vx is a translation of Vi#[ In the general case of
inhomogeneous boundary conditions s9"x# $ const[ "1[4# "as well as in the case that the condition
"1[8# breaks down# sV"x# is a step function sV"x# � sV"y# at x $ Vi and y $ Vj "i � j# as well as
sV"x# $ ðsŁx"x# at x $ Vi[

2[ General integral equations and effective _eld hypothesis

2[0[ General inte`ral equations

From eqns "1[0#Ð"1[3# a general integral equation for s and o can be derived[ Substituting "1[2#
and "1[0# into the equilibrium eqn "1[1#\ we obtain a di}erential equation for the strain o

9"L"9#¦L0"x##ðo"x#−"b"9#¦b0"x##Ł � 9[ "2[0#

Introducing the modi_ed strains e"x# 0 o"x#−b"9#\ eqn "2[0# may be reduced to a symmetrized
integral form

o"x# � o9"x#−9 Ð G"x−y#"9L0"y#e"y#−9ðL9¦L0"x#Łb0"x## dy\ "2[1#

where o9"x# 0 M"9#s"9#"x# is the modi_ed strain which would exist in the medium under the same
boundary conditions if L 0 L"9# and b 0 9[ G is the in_nite!homogeneous!body Green|s tensor of
the Lame�|s equation for a homogeneous medium with an elastic modulus tensor L"9#

9"L"9# 0
1
ð9 & G"x#¦"9 & G"x##TŁ# � −dd"x#\ "2[2#

d"x# is the Dirac delta function\ d is the unit second!order tensor[
After integration of eqn "2[1# by parts\ it is found that

e"x# � e9"x#¦Ð U"x−y#"L0"y#e"y#−ðL"9#¦L0"y#Łb0"y## dy

¦F 9G"x−s#"L0"s#e"s#−ðL"9#¦L0"s#Łb0"s##n"s# ds\ "2[3#

where the surface integration is taken over the boundary s $ 1w of the mesodomain w\ containing
a statistically large number of inclusions^ n is the unit outward normal[ The integral operator
kernel U is de_ned by the Green tensor G "2[2#]

Uijkl"x# � ð9j9lGik"x#Ł "ij#"kl#\ "2[4#

where the notation indicates symmetrization on "i j# and "kl#[
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Equation "2[3# is centered\ i[e[ from both sides of eqn "2[3# their average over the moving
averaging cell Vx "1[7# are subtracted

e"x# � ððeŁŁx"x#¦ðeŁx"x#¦Ð ððUŁŁx"x−y#"L0"y#e"y#−ðL"9#¦L0"y#Łb0"y## dy

¦F ðð9GŁŁx"x−s#"L0"s#e"s#−ðL"9#¦L0"s#Łb0"s##n"s# ds\ "2[5#

where x $ Vi\ and one introduces a new centering operation over the cell x $ Vi

ððfŁŁx"x−y# 0 f"x−y#−ðfŁx"x−y#[ "2[6#

For the analyses of integral convergence in eqn "2[5#\ we expand U"z−y# in a Taylor series about
x and integrate term by term over the unit cell Vx with the center x\ then

ððUŁŁx"x−y# � −
0

1VÞ x gVx

"z−x# &"z−x# dz99U"x−y#¦= = = [ "2[7#

As is evident from eqn "2[7#\ the tensor ððUŁŁx"x−y# is of order O"a1
V =x−y=−4# with the dropped

terms in eqn "2[7# of order O"a3
V =x−y=−6# and higher!order terms[ Then the absolute convergence

of volume integral "2[5# takes the place because at su.cient distance x from the boundary 1w and
=x−y= : � the integration over y can be carried out independently for both ððUŁŁx"x−y# "the
function of the {slow| variable x−y# and the expression in curly brackets "L0"y#e!
"y#−ðL"9#¦L0"y#Łb0"y## "the function of {fast| variable y# and therefore the volume integral con!
verges absolutely[ In a similar manner the term ðð9GŁŁx"x−s# in the surface integral "2[5# is of
order O"a1

V =x−y=−3# and the surface integral vanishes at =x−s= : �\ s $ 1w[ Expending e9"z# in a
Taylor series about x gives\ by analogy with eqn "2[7#\ that ððe9ŁŁx"x# is of order O"a1

V99e9"x##[
Therefore\ hereafter in interest of obtaining explicit _nal expressions\ we can neglect by the term
ððe9ŁŁx"x# "2[5# as compared with ðeŁx"x# in the {slowly!varying| approximation of e9"x#[

By this means eqn "2[5# is reduced to the approximate relation "which is exact for the linear
function e9"x##

e"x# � ðeŁx"x#¦Ð ððUŁŁx"x−y#"L0"y#e"y#−ðL"9#¦L0"y#Łb0"y## dy[ "2[8#

Expressing eqn "2[8# in terms of stresses\ the general equation

s"x# � ðsŁx"x#¦Ð ððGŁŁx"x−y#h"y# dy "2[09#

is obtained\ where the {strain polarization| tensor h de_ned as

h"y# � M0"y#s"y#¦b0"y#\ "2[00#

is simply a notational convenience[ The integral operator kernel in eqn "2[09# is de_ned by the
tensor U"x−y# "2[4#]

G"x−y# 0 −L"9# ðId"x−y#¦U"x−y#L"9#Ł\ "2[01#

where I is a unit fourth!order tensor[
Evidently the right!hand!side volume integrals in eqns "2[8# and "2[09# converge absolutely\

during which no restrictions are imposed on the microtopology of the lattice L\ and eqns "2[8# and
"2[09# are valid for any deterministic "even nonperiodic# structures[ The principle advantages of
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eqns "2[8# and "2[09# as compared with eqn "2[5# are the lack of the surface integral in eqns "2[8#
and "2[09#\ and the local character of eqns "2[8# and "2[09#[ The last!mentioned advantage makes
it possible to reduce the analysis of in_nite number inclusion problems to the analysis of a _nite
number of inclusions located in some RVE "see Section 6 for details#[

2[1[ Some particular simpli_cations

In the interest of obtaining more simple relations\ we now consider the case of triply periodic
structures "1[8# under the uniform boundary conditions "1[09#[ Then the terms in curly brackets
in the right!hand!side integrals of eqns "2[8# and "2[09# are invariant with respect to the unit cell
number and eqns "2[8# and "2[09# can be rewritten in the form

e"x# � eV"x#¦Ð U"x−y#"L0"y#e"y#−ðL"9#¦L0"y#Łb0"y#−"L0e−Lb0#V"x## dy\ "2[02#

s"x# � sV"x#¦Ð G"x−y#"h"y#−hV"x## dy[ "2[03#

In the pure elastic case b 0 9\ exact eqn "2[02# was previously used by Buryachenko and Parton
"0881# for both "L0o#V"x# 0 const[ and ðoŁx"x# � oV"x# 0 const[ when in eqn "2[03#
ðhŁx"x# � hV"x# 0 const[ and ðsŁx"x# � sV"x# 0 const[ as well[

It should be emphasized that for the _eld X bounded in one direction ðfor example for the _eld
X "1[5#Ł the surface integral "2[3# over a {cylindrical| surface "with the surface area proportional
to r � =x−s=# tends to zero with =x−s= : � as r−0 simply because the generalized function9G"x−s# is an even homogeneous function of order −1[ Therefore\ for in_nite media the surface
integral "2[3# vanishes\ and eqn "2[3# can be rewritten as

e"x# � e9"x#¦Ð U"x−y#"L0"y#e"y#−ðL"9#¦L0"y#Łb0"y## dy\ "2[04#

or\ alternatively\ in terms of stresses

s"x# � s9"x#¦Ð G"x−y#h"y# dy[ "2[05#

Clearly in the considered case of X bounded in one direction\ eqns "2[04# and "2[05# are exact\ and
the right!hand!side integrals in "2[04# and "2[05# converge absolutely[

Note that for the elastic analysis of triply periodic structures Fassi!Fehri et al[ "0878# used eqn
"2[04# " for b 0 9# without any regularization of the right!hand!side integral in eqn "2[04# which
diverges at in_nity for the case of triply periodic composites[

2[2[ Approximative effective _eld hypothesis

In order to simplify eqn "2[09# we now apply the main hypothesis of many micromechanical
methods\ the so!called e}ective _eld hypothesis "see for reference e[g[ Buryachenko and Ram!
merstorfer\ 0886#]

"H0# Each inclusion vi has an ellipsoidal form and is located in the _eld o¹i 0 o¹"x#"x $ vi# which is
homogeneous over the inclusion vi[ The perturbations introduced by the inclusion vj at the point x

are de_ned by the relations "no sum of j#
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Ð U"x−y#Vj"y#h"y# dy � Tj"x−xj#v¹ jhj\ "2[06#

where

hj 0 ðh"x#Vj"x#Ł"j# � v¹−0
j Ð h"x#Vj"x# dx "2[07#

is an average over the volume of the inclusion vj\ and

Tj"x−xj# � 6
v¹−0

j Ð G"x−y#Vj"y# dy for x ( vj\

−v¹−0
j Qj for x $ vj\

"2[08#

where the tensor Qj is associated with the well!known Eshelby tensor by

Sj � I−M"9#Qj\ Qj 0 −ðG"x−y#Ł" j# � const[\ "x\ y $ vj#[ "2[19#

Then in the framework of the hypothesis "H0# and in view of the linearity of the problem there
exist constant fourth and second!rank tensors B"x#\ R"x# and C"x#\ F"x#\ such that

s"x# � B"x#s¹ "x#¦C"x#\ v¹ih"x# � R"x#s¹ "x#¦F"x#\ x $ vi\ "2[10#

where

R"x# � v¹iM0"x#B"x#\ F"x# � v¹i ðM0"x#C"x#¦b"x#Ł[ "2[11#

According to Eshelby|s "0850# theorem there are the relations between the averaged tensors "2[10#

R"x# � v¹iQ
−0
i "I−B#\ F � −v¹iQ

−0
i C\ "2[12#

where fi 0 ðf"x#Ł"i# "f stands for B\ C\ R\ F#[ No restrictions are imposed on the microtopology of
the coated inclusions as well as on the inhomogeneity of the stress state in the coated inclusions[
In the general case of coated inclusions vi the tensors B"x# and C"x# can be found by the
transformation method by Dvorak and Benveniste "0881# using _nite element analysis[ For par!
ticular cases of coated inclusions di}erent analytical models are known "references can be found
e[g[ in the survey of Buryachenko and Rammerstorfer\ 0887a\ b#[

For the homogeneous ellipsoidal domain vi with

M0"x# � M"i#
0 � const[\ b0"x# � b"i#

0 � const[ at x $ vi\ "2[13#

we have a classical solution

B � "I¦QiM
"i#
0 #−0\ C � −BQib

"i#
0 \

R � v¹iM
"i#
0 B\ F � v¹i"I¦M"i#

0 Qi#−0b"i#
0 [ "2[14#

3[ Estimation of effective stress in the inclusions

3[0[ Local approximation of effective stresses

In the framework of the hypothesis "H0# the system "2[09#\ taking "2[10# and "2[12# into account
we get
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h¹ "xi# � hav"xi#¦Ð K"xi\ y#h¹ "y# dy\ "3[0#

where h¹ "x# 0 hi\ and v¹ih
av"x# 0 RðsŁx"x#¦F "at x $ vi# will be named the modi_ed strain pol!

arization tensor of average stresses[ The integral operator kernel introduced in eqn "3[0# is de_ned
on the lattice L

K"xi\ y# � R s
m

ðTim"xi−xm#"0−Vi"y##−ðTmŁxi
"xi−xm#Łd"y−xm#\ "3[1#

and

Tim"xi−xm# �"v¹iv¹m#−0 Ð G"x−y#Vi"x#Vm"y# dx dy[ "3[2#

Rewriting eqn "3[0# in the spirit of a subtraction technique

h¹ "xi# � h¹
av"xi#¦Ð K"xi\ y# dyh¹ "xi#¦Ð K"xi#\ y#ðh¹ "y#−h¹ "xi#Ł dy\ "3[3#

gives

h¹ "xi# � Y"xi#hav"xi#¦Ð K"xi\ y#h¹ "y# dy\ "3[4#

where

Y"xi# 0"I−Ð K"xi\ y# dy#−0\ "3[5#

K"xi\ y# 0 Y"xi#ðK"xi\ y#−d"xi−y# Ð K"xi\ z# dzŁ[ "3[6#

The matrix Y"xi# determines the {local| action of the surrounding inclusions on the separated one\
while the integral operator kernel K"xi\ y# describes a {nonlocal| action of these inclusions[ For
the purpose of clarifying the above statement we consider\ as an example\ a particular problem by
Buryachenko and Parton "0881# for triply periodic structures "1[8# under the homogeneous bound!
ary conditions "1[09#[ In such a case they found that Y"xi# 0 Ytri � const[\ and for an ellipsoidal
representative volume element wel "RVE# containing a statistically large number of inclusions the
result can be rewritten in the current notation as

Ytri � 0I−RQ"wel#−R s
m�i

Tim"xi−xm#1
−0

\ xm $ wel\ "3[7#

where the tensor Q"wel# is de_ned for the domain wel in a similar manner to eqn "2[19#[ Clearly for
triply periodic structures "1[8# eqns "3[5# and "3[7# coincide[ If furthermore\ s9"x# 0 const[ then
h¹ "y# is insensitive to translations\ and the right!hand!side integral in eqn "3[4# vanishes\ and eqn
"3[4# is local[

When one of two "or both# assumptions "1[8# and "1[09# breaks down\ eqn "3[4# is nonlocal on
two counts[ So\ if only the assumption "1[09# breaks down then h¹ "y# $ const[\ and the integral in
eqn "3[4# does not vanish[ Nevertheless the current kind of the nonlocalization can be usually
easily analyzed[ So\ in this case the kernel K"xi\ y# is a translation kernel] K"xi\ y# � K"xi−y#\
and the current problem is akin to the estimation of nonlocal e}ects in statistically homogeneous
random structure composites[ So\ for slowly!varying functions h¹ "y# Taylor expansion of h¹ "y# about
xi reduces eqn "3[4# to a di}erential equation with constant coe.cients[ The method of its solving
that _rst comes to mind is using the Fourier transformation to transform the di}erential version
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of solving "3[4# into the inverse problem of solving the multiplicative equation "see e[g[ Bury!
achenko\ 0887\ 0888^ Buryachenko and Rammerstorfer\ 0887c#[

The breakdown of the assumption "1[8# is more common in practice\ because it leads to the
inequality Y"xi# $ const[ Then the average stresses ðsŁx"x# $ const[ and hence h¹ "y# $ const[ To
put this another way\ we will have a nonlocal eqn "3[4# even at the homogeneous boundary
conditions "1[09#\ which is di.cult to solve by the Fourier transform method insofar as
K"xi\ y# � K"xi−y#[ Moreover\ let us consider Y"xi# "3[5# as an approximation of the cor!
responding right!hand!side nonlocal operator in eqn "3[4# by constant tensor "zero!order approxi!
mation#[ From such consideration it can be concluded that {local| part Y"xi# of the nonlocal
operator "3[4# depends explicitly not only on the local parameters of the inclusion distribution at
the point xi\ but also in a certain neighborhood of that point[ This sort of a so!called nonlocal
e}ect was identi_ed by Buryachenko and Rammerstorfer "0887c# for statistically inhomogeneous
random structure composites\ and takes place for doubly!periodic structure as well "see also
Section 6#[

3[1[ Estimation of the nonlocal operator by the iteration method

As mentioned the method of Fourier transform has been much investigated in nonlocal micro!
mechanics\ but its use is di.cult if K"xi\ y# � K"xi−y#[ This inconsistency can be avoided if the
method of successive approximations\ which is also called the Neumann series method\ is used[
With this in mind we initially de_ne the function

"Kh¹#"xi# � Ð K"xi\ y#h¹ "y# dy[ "3[8#

Then eqn "3[4# can be abbreviated as

h¹ � Yhav¦Kh¹[ "3[09#

The iteration method proceeds by using the recursion formula

h¹ "k¦0# � Yhav¦Kh¹ "k# "3[00#

to construct a sequence of functions "h¹ "k## that can be treated as an approximation of the solution
of eqn "3[09#[ Usually the driving term of this equation is used as an initial approximation]

h¹ "9# "xi# � Y"xi#hav"xi#\ "3[01#

which is a local approximation of the e}ective stress in terms of the Subsection 3[0[ The _rst
approximation is

h¹ "0# "xi# � Y"xi#hav"xi#¦Y"xi# Ð K"xi\ y#ðY"y#hav"y#−Y"xi#hav"xi#Ł dy\ "3[02#

and again proceeding formally\ it suggests the Neumann series form for the solution h¹ of "3[09#

h¹ � s
�

k�9

KkYhav\ "3[03#

where the power Kk is de_ned recursively by the condition K0 � K and the kernel of Kk is "see
e[g[ Pipkin\ 0880#
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Kk"x\ y# � Ð K"x\ z#Kk−0"z\ y# dz[ "3[04#

In e}ect the iteration method "3[00# transforms the integral equation problem "3[4# into the linear
algebra problem "3[03# and "3[04# in any case[ The sequence "h¹ "k## "3[00# converges to a solution
h¹ "3[4# for the kernel of K {small| enough[ The classical mathematical existence and uniqueness
problems "and what is meant by saying {small| or {slowly!varying| enough#\ as are usually assumed
in micromechanics\ are beyond the scope of the current paper[ Nevertheless\ it should be mentioned
that Y"xi# : I and ÐK"xi\ y# dy : 9 as n"xj#v¹j : 9 [j[ Therefore\ the iteration method is appropriate
at least for dilute concentration of inclusions[ However\ as we shall see in Section 6\ it is easy to
compute the approximation solution by the constructed procedure "3[03# used with the acceptable
controlled accuracy[

4[ Average stresses in the components and effective thermoelastic properties

4[0[ General relations

Substituting "3[03# into "2[10# and combining terms\ "2[10# _nally gives the stress _eld inside the
inclusions\ s"z#"z $ vi#

s"xi\ z# � B"z#R−0 6−F¦v¹i s
�

n�9

"KnYhav#"xi#7¦C"z#\ "4[0#

from which the representation for the average stress inside the inclusion vi follows

ðsŁi � BR−0 6−F¦v¹i s
�

n�9

"KnYhav#"xi#7¦C\ "4[1#

where the {fast| variable z $ vi characterizing the stress state is de_ned in the local coordinate system
connected with the semiaxes of the ellipsoid vi[ There is connection between the {slow| x and {fast|
z $ vi variables] x � Smjej¦z[

The mean stress in the matrix of the cell Vi follows simply from eqn "4[1# and the relation

ðsŁ9"x# �
0

c"9#
"ðsŁx"x#−c"0#ðsŁi#\ "4[2#

where x $ Vi:vi[ Substituting "4[1# into "2[09# gives the local stress in the matrix x $ Vi:vi

s"x# � ðsŁx"x#¦Ð ððGŁŁx"x−y# s
�

n�9

"KnYhav#"y# dy[ "4[3#

Our goal is to _nd a constitutive equation relating ðoŁxi
"x# to ðsŁxi

"x#\ which is valid when these
vary with xi[ After estimating local stresses inside the inclusions\ see "4[0#\ this problem becomes
trivial\ and\ taking the average "1[7# or "1[2#\ leads to

ðoŁxi
"xi# �"M�ðsŁxi

#"xi#¦B�"xi#\ "4[4#

where the integral operator M� and the tensor B� admit the representation
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M� � M"9#¦YR\ "4[5#

B� � b9¦YF\ "4[6#

and the operator Y is de_ned by the Neumann series

Y � s
�

k�9

nKkY[ "4[7#

The quantities M� and B� are called the e}ective compliance operator and the e}ective eigen!
strains\ respectively\ and are simply a notational convenience[

It should be emphasized that both M� "4[5# and B� "4[6# are linear functions of the operator Y
"4[7#[ Therefore\ the e}ective eigenstrains B� can be expressed in terms of the e}ective compliance
operator M�]

B� � b"9#−M"9#R−0F¦M�R−0F[ "4[8#

4[1[ Some particular cases

For example\ the zeroth!order approximation of eqn "4[4# is contained in the familiar constitutive
equations for a homogeneous solid with material properties replaced by e}ective properties

M�"9# "xi# � M�"xi# 0 M"9#¦Y"xi#Rn"xi#\ "4[09#

B�"9# "xi# � b�"xi# 0 b"9#¦Y"xi#Fn"xi#[ "4[00#

In the _rst!order approximation of the constitutive eqn "4[4# additional integral terms involving
average strains and stresses arise

ðoŁxi
"xi# �"M�"0#ðsŁxi

#"xi#¦B�"0# "xi#\ "4[01#

where

"M�"0#ðsŁxi
#"xi# � M�"xi#ðsŁxi

"xi#¦n"xi#Y"xi# Ð K"xi\ y#ðY"y#ðsŁy"y#

−Y"xi#ðsŁxi
"xi#Ł dyR\ "4[02#

B�"0# "xi# � b�"xi#¦n"xi#Y"xi# Ð K"xi\ y#ðY"y#−Y"xi#Ł dyF[ "4[03#

Therefore\ the average strains at a point are related to the average stresses at every point[
Substituting the zero!order approximation of both M� "4[09# and B� "4[00# into "4[8# leads to

b�"xi# � b"9#¦"M�"xi#−M"9##R−0F[ "4[04#

In particular\ for triply periodic composites "1[8# "when b�"x# � b� � const[ and
M�"x# � M� � const[# with homogeneous inclusions "2[13# the classical formula for two!phase
statistically homogeneous composites by Levin "0856# and by Rosen and Hashin "0869# follows
from the relation "4[04#

b� � b"9#¦"M�−M"9##"M"0#−M"9##−0"b"0#−b"9##[ "4[05#
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However\ in contrast to the case of statistically homogeneous composites "4[05#\ the formula "4[04#
is not an exact one\ because the initial relation "3[0# is obtained under some additional assumptions[

5[ Doubly!periodic inclusion _eld in a _nite stringer

For the general case of doubly periodic structures we obtained the representations of nonlocal
operators "4[1# and "4[4# in terms of the Neumann series "4[7#[ Nevertheless\ for a doubly!periodic
array of inclusions "1[5# in a _nite ply containing 1ml¦0 layers of the inclusions " f"m2# 0 9 at
=m2= × ml# the problem can be solved immediately if the composite material is subjected to a stress
gradient along the functionally graded direction e2[ Then in the framework of the e}ective _eld
hypothesis "2[04# the general exact eqn "2[05# is reduced to the linear system of 1ml¦0 algebraic
equations for h¹ "xm# in terms of h9"xn#

v¹nh¹ "xn# � v¹nh
9"xn#¦R s

m�n

Tnm"xn−xm#v¹mh¹ "xm#\ "5[0#

where xm �"x0
m\ x1

m\ x2
m# and h¹ "xm# 0 h¹ "x2

m#^ v¹nh
9"xn# 0 v¹nh

9"x2
n # 0 Rðs9"x#Łn¦F is called the exter!

nal strain polarization tensor[
Recognizing that in each inclusion layer x2 � const[ h¹ "xn# 0 h¹ "xm# for [n\ m the system "5[0# has

the _nite number of unknowns\ and we may express eqn "5[0# in the following compact form

v¹nh
9"xn# � s

m2 �ml

m2 �−ml

v¹mD−0
n2m2

h¹ "xm#\ "5[1#

which tends to the solution

v¹nh¹ "xn# � s
m2 �ml

m2 �−ml

v¹mDn2m2
h9"xm#[ "5[2#

Here the inverse matrix D−0

"D−0#n2m2
� dn2m2 6I−R s

m0\m1�9

Tnm"xn−xm#7−"0−dn2m2
#R s

m\=m2 =¾ml

Tnm"xn−xm#\ "5[3#

where n2\ m2 c −ml\ ml[ By virtue of the fact that h¹ "xn# and h9"xn# do not vary in the layer
x2

n2
� const[ one bears in mind\ for de_niteness sake\ that n0\ n1 � 9 "5[2#[

Substituting "2[10# into "5[2# gives the explicit relations for the stress in the inclusions z $ vn]

s"xn\ z# � B"z#R−0 6−F¦ s
ml

m2 �−ml

Dn2m2
ðRðs9Ł"m#¦FŁ7¦C"z#\ "5[4#

and in the matrix z $ Vn:vn]

s"xn\ z# � s9"z#¦s
m

Tm"z−xm# s
ml

k2 �−ml

Dm2k2
ðRðs9Ł"k# "xk#¦FŁ[ "5[5#
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Obtained formulae "5[4# and "5[5# make possible detailed estimations of local stresses in the cell
Vn[ However\ the explicit relations between the average values ðsŁxn

"xn# and ðoŁxn
"xn# is more

convenient to use for the analysis of the overall response of the inclusion ply[ With this in mind
we will average eqns "1[2# and "2[05# over the cell Vn taking eqns "1[7# and "2[08# into account

ðoŁxn
"xn# � M"9#ðsŁxn

"xn#¦b"9#¦n"xn#v¹nh¹ "xn#\ "5[6#

ðsŁxn
"xn# � ðs9Łxn

"xn#¦s
m

ðTmŁxn
"xn−xm#v¹mh¹ "xm#[ "5[7#

For simplicity we will approximate ðs9Łxn
"xn# � ðs9"x#Ł"n# "x $ vn#[ Then\ substitution of "5[0# into

"5[7# gives

RðsŁxn
"xn#¦F � v¹nh¹ "xn#−R s

m�n

Tnm"xn−xm#v¹mh¹ "xm#¦R s
m

ðTmŁxn
"xn−xm#v¹mh¹ "xm#[ "5[8#

Solving the algebraic system "5[8# in terms of ðsŁxn
"xn# and substituting this solution into "5[6#

give

ðoŁxn
"xn# � M"9#ðsŁxn

"xn#¦b9¦n"xn# s
ml

m2 �−ml

Zn2m2
ðRðsŁxm

"xm#¦FŁ\ "5[09#

where the matrix Z−0 has the following elements "Z−0#nm]

"Z−0#n2m2
�"D−0#n2m2

¦ s
m0\m1

RðTmŁxn
"xn−xm#[ "5[00#

The nonlocal eqn "5[09# may be represented in a standard integral form

ðoŁxn
"xn# � Ð M�"xn\ y#ðsŁy"y# dy2¦B�"xn#\ "5[01#

where the kernel M�"xn\ y# of the nonlocal operator and the e}ective eigenstrain B�"xn#\ introduced
in "5[01#\ are de_ned as

M�"xn\ y# � M"9#d"xn−y#¦n"xn# s
ml

m2 �−ml

d"xm−y#Zn2m2
R\ "5[02#

B�"xn# � b9¦n"xn# s
ml

m2 �−ml

Yn2m2
F[ "5[03#

For triply periodic structures "1[8# and the homogeneous boundary conditions "1[09# the overall
constitutive eqns "5[01#Ð"5[03# are reduced to eqn "4[4# with the e}ective material tensors "4[09#
and "4[00#[ The same equivalence takes place also for central cells of the ply thick enough]

ml Ł 0\ =m2 = ð ml[ "5[04#

Nevertheless\ in the general case of the _nite inclusion ply we have ðsŁx"x# $ const[ even for
homogeneous boundary conditions "1[09#[ So\ from eqns "5[2# and "5[7# we _nd
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ðsŁxn
"xn# � s9¦s

m

ðTmŁxn
"xn−xm# s

ml

l2 �−ml

Dm2l2 ðRs9¦FŁ\ "5[05#

and therefore ðsŁxn
"xn# $ const[ even for s9 0 const[

It should be pointed out that the long!range e}ect takes place at the estimation of average
stresses "5[05#[ This fact is explained by di}erent behaviors at the in_nity of summed functions
K"xi\ xj# "as O"=xi−xj=−4## "3[1# and Tij"xi−xj# "as O"=xi−xj=−2## "3[2# in the representations of
e}ective properties "4[02# and the stress concentrator tensor "5[05#\ respectively[ Although it is
well known that integral of the function Tij"xi−xj# is not absolutely convergent in the whole
Euclidean space R2\ we have no convergence problems for any _nite thickness of the ply\ since in
the case considered the domain of integration is bounded in the direction e2[

By this means the initial problem with in_nite numbers of the spherical inclusions "micro level#
are reduced to the problem with 1ml¦0 layers "meso layer#[ At the microlevel\ each layer is
treated as a particulate composite of appropriate inclusion volume fraction\ the matrix!inclusion
microtopology of which is explicitly accounted for as well as the interactions of inclusions from
di}erent layers are considered[ At the meso level the composite is viewed as consisting of alternating
homogenized layers[ As this takes place\ even for identical inclusion layers the e}ective local and
nonlocal parameters of homogenized layers change from layer to layer "see for comparison
Buryachenko\ 0887#[ These nontrivial dependences are explained by the interactions of inclusions
from di}erent layers and therefore the coupling of micro and meso levels is established explicitly[

6[ Numerical results

6[0[ Three!dimensional _elds

Let us consider as an example a composite consisting of isotropic homogeneous components
and having identical spherical inclusions L"i# �"2k"i#\ 1m"i## 0 2k"i#N0¦1m"i#N1\ "N0 � d & d:2\
N1 � I−N0#[ Let an inclusion ply "see Fig[ 0# has a simple cubic "SC# lattice containing 1ml¦0
layers of inclusions[ For central inclusion layers of the thick ply "5[04# the local e}ective properties
M�"xi# � M� 0 const[ "4[09# coincide with the properties of triply periodic structures and the
tensor of e}ective moduli L� 0"M�#−0 is characterized by three elastic moduli]

k�02 � 0
2
L�2222¦

1
2
L�0022\

m�02 � L�0202\

m½�02 � 0
1
L�2222−

0
1
L�0022\ "6[0#

where the sti}ness components are given with respect to a coordinate system whose base vectors
are normal to the faces of the unit cell[ In the interest of obtaining maximum di}erence between
the e}ective properties\ estimated by the di}erent methods we will consider the examples for hard
inclusions "n"9# � n"0# � 9[2\ m"0#:m"9# � 0999# as well as for the voids "L"0# 0 9#\ and a number of
values of the volume concentration of inclusions[ For triply periodic SC arrays the local elastic
moduli "6[0# are computed by analytical method by Sangani and Lu "0876#\ Nunan and Keller
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Table 0
The overall elastic constants of SC arrays of voids in the thick ply] the components "i j# �"02# and "i j# �"01# for the
boundary layer "3[5#\ "4[09#^ "SL# Sangani and Lu "0876#\ "H0# the proposed method for triply periodic structure "3[7#\
"4[09#

Boundary layer Central layer

k�ij:k
"9# m�ij:m

"9# m½�ij:m
"9# k�02:k

"9# m�02:m
"9# m½�02:m

"9#

c 02 01 02 01 02 01 SL H0 SL H0 SL H0

9[09 9[66 9[66 9[70 9[70 9[73 9[73 9[66 9[66 9[71 9[70 9[73 9[73
9[19 9[59 9[59 9[54 9[53 9[60 9[61 9[59 9[59 9[56 9[53 9[61 9[61
9[29 9[36 9[36 9[49 9[49 9[48 9[50 9[35 9[36 9[44 9[36 9[50 9[50
9[39 9[25 9[26 9[28 9[28 9[38 9[40 9[25 9[25 9[36 9[27 9[49 9[40
9[49 9[16 9[17 9[18 9[29 9[27 9[30 9[13 9[17 9[27 9[18 9[28 9[30

Table 1
The overall elastic constants of SC arrays of rigid inclusions in the thick ply] the components "i j# �"02# and "i j# �"01#
for the boundary layer "3[5#\ "4[09#^ "N# Nunan and Keller "0873# for c � 9[0Ð9[3\ "K# Kushch "0876# for c � 9[4\ "H0#
the proposed method "3[7#\ "4[09#

Boundary layer Central layer

k�ij:k
"9# m�ij:m

"9# m½�ij:m
"9# k�02:k

"9# m�02:m
"9# m½�02:m

"9#

c 02 01 02 01 02 01 N:K H0 N:K H0 N:K H0

9[09 0[07 0[07 0[11 0[10 0[15 0[16 0[07 0[07 0[11 0[10 0[16 0[16
9[19 0[39 0[39 0[35 0[35 0[53 0[57 0[30 0[39 0[35 0[34 0[69 0[58
9[29 0[57 0[58 0[65 0[64 1[06 1[18 0[60 0[58 0[66 0[63 1[24 1[21
9[39 1[94 1[96 1[04 1[04 1[80 2[08 1[06 1[96 1[14 1[01 2[63 2[10
9[49 1[43 1[50 1[58 1[62 2[66 3[16 2[49 1[50 2[03 1[56 5[38 3[22

"0873#\ and Kushch "0876# as well as by the formulae "3[7# and "4[09# "see Tables 0 and 1#^ here
n"i# 0"2k"i#−1m"i##:"5k"i#−1m"i##\ "i � 9\ 0# is a Poisson ratio^ in addition to the relations "6[0# the
parameters k�01\ m�01 and m½�01 obtained by replacement of the index 2 in eqns "6[0# by the index 1
were estimated for the boundary layer m2 � ml\ ml � 49 "see Tables 0 and 1#[ For the boundary
layer m2 � ml the tensor of local e}ective moduli L�"x# shows hexagonal symmetry[

The composite considered is essentially anisotropic\ and the anisotropy of the elastic properties
increases in an essential manner in the boundary layer[ So\ in Table 2 the value L�0022:L

9
0022 and

L�2222:L
9
2222 are presented for a rigid inclusion ply with cubic!like structure and di}erent numbers

of inclusion layers] the single layer "ml � 9#\ the boundary layer of triply layer ply "x2 � =e2=\ ml � 0#\
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Table 2
The local overall elastic constants of SC arrays of rigid inclusions] "B99# the single layer\ "B02# the boundary layer of
triply layer ply\ "B92# the central layer of triply layer ply\ "B# the central layer of the thick layer ply

L�0022:L
"9#
0022 L�2222:L

"9#
2222

c B99 B02 B92 B B99 B02 B92 B

9[09 0[034 0[031 0[028 0[028 0[101 0[198 0[102 0[102
9[19 0[296 0[181 0[164 0[164 0[361 0[380 0[402 0[401
9[29 0[385 0[347 0[301 0[301 0[704 0[755 0[816 0[829
9[39 0[627 0[551 0[457 0[469 1[156 1[264 1[401 1[495
9[49 1[986 0[875 0[749 0[733 1[713 2[996 2[137 2[156

Table 3
Normalized SIF kI in a semi!in_nite periodic collinear row of cracks] "H0# e}ective _eld hypothesis method "6[7#^ "I#
the improved method "6[8#^ "R# exact solution by Rubinstein "0876#\ "K# the exact solution "6[09#

kI"−l# kI"l# kI"�2l#

h"1l#−0 H0 I R H0 I R H0 I K

9[29 0[198 0[037 0[982 0[198 0[296 0[132 0[332 0[371 0[366
9[19 0[178 0[083 0[061 0[178 0[343 0[314 0[517 0[692 0[578
9[09 0[356 0[189 0[165 0[356 0[729 0[683 1[953 1[160 1[196

the central layer of triply layer ply "x2 � 9\ ml � 0#\ and the central layer of the thick ply
"x2 � 9\ ml � 29#[

As can be seen from Tables 0Ð2\ in the interior of a thick layer ply "ml : �#\ su.ciently far
away from its boundary\ L�"x# coincides with the e}ective moduli L� for the triply periodic
structure[ Near the boundary of the ply the tensors of the e}ective moduli L�"x# vary signi_cantly
within the boundary layer x2 � 2ml=e2= "boundary layer e}ect#[ There is a slight dependence of
local overall e}ective moduli L�"x# on the ply size ml "scale e}ect#[

We now come to the analysis of the nonlocal constitutive eqn "4[5# and "4[01#[ Let us for the
sake of de_niteness\ the _nite ply of rigid spherical inclusions is subjected to a known average
stress ðsŁx along the functionally graded direction e2 and only one component of ðsijŁx

"i\ j � 0\ 1\ 2# di}ers from zero

ðsŁx"x# � f"x2#scon\ "6[1#

scon
ij � const[ � 9\ all other scon

kl � 9\ "kl � i j#\ "6[2#

and
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Fig[ 1[ Normalized local strains oloc
22"x#:"1q"9#scon

22 # "dashed and dotÐdashed lines# and nonlocal onon
22 "x#:"1q"9#scon

22 # "solid
and dotted lines# components of strains vs a layer number to dimensionless parameter anor � 1] ml � 1 "solid and dotÐ
dashed lines#\ ml � 3 "dotted and dashed lines#[

f"x2# � 0−cos0
px2

a 1\ "6[3#

where a is a positive length parameter[ Let the tensors oloc"x# 0 M�"x#ðsŁx"x# and
onon"x# 0 ðoŁx"x#−M�"x#ðsŁx"x# be named the local and nonlocal average strains\ respectively[
Clearly f "1am# � 9 if m is the integer set Z\ and therefore oloc"x# � 9 at x2 � 1am\ whereas
onon"x# � 9 at the mentioned points[ In Fig[ 1 the 22!components of normalized local
oloc
22"x2#:"1q"9#scon

22 # and nonlocal onon
22 "x2#:"1q"9#scon

22 # strains are plotted as the functions of integer!
valued dimensionless coordinates x2:=e2= � 9\ 20\ 21\ [ [ [ "a layer number# for di}erent string
thicknesses "ml � 1 and ml � 3# and for a single value of the normalised length parameter
anor 0 a:=e2= � 1^ here M"9# 0"2p"9#\ 1q"9##\ c � 9[4[ As can be seen from Fig[ 1\ the boundary layer
e}ect shows up most vividly for nonlocal components of strains^ so onon

22 "x# in the boundary and
central layers can di}er from one another by a factor of two or even more\ where the corresponding
local components of strains di}er only by 02)[ The scale e}ect that takes place is small[

It should be mentioned that\ in the computations reported in Fig[ 1\ the nonlocal average strains
onon"x# was evaluated using the _rst!order approximation of the nonlocal operator "4[02#[ Since
we desire an evaluation of the accuracy of this approach\ we will solve the same problem "4[4#\
"4[7# with any desirable accuracy by the truncation of the Neumann series[ For the sake of
de_niteness we consider the central layers of the thick ply containing the rigid inclusions
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Fig[ 2[ Normalized components of nonlocal strains onon
ij "x#:"1q"9#scon

ij # vs a layer number for both the _rst!order approxi!
mation "dotÐdashed line is for i j � 00\ dashed line is for i j � 22# and the twentieth!order approximation of the nonlocal
operator Y "solid line is for i j � 00\ dotted line is for i j � 22# to dimensionless parameter anor � 1[

"=m2= ¾ 3\ ml � 49\ c � 9[4# and loaded by the stress "6[1#\ "6[2#[ The results shown in Fig[ 2
represent nonlocal parts of average strains onon"x# estimated by both the _rst "4[02# and twentieth
"k � 9\ [ [ [ \ 19# "4[4#\ "4[5# and "4[7# order approximations of the nonlocal operator Y "4[7#[ The
_rst!order approximation "k � 9\ 0# "4[5# provides the accuracy within 6) error\ the second!order
approximation "k � 9\ 0\ 1# "4[5# guarantees the error no more than 9[4)[ For the ply thick enough
the maximum magnitude of local strains oloc

22"x# is insensitive to the values of the normalized length
parameter anor while the increase of anor leads to a decrease of the nonlocal component onon

22 "x#
ðcompare Fig[ 2 with Fig[ 3\ which is plotted for the twentieth iteration of the nonlocal operator
"4[5# and "4[7#Ł[

6[1[ Two!dimensional _elds

The method being proposed for the analysis of stress _elds within doubly periodic structures
"5[05# can be used for the consideration of some singly periodic structures if we assume that
=e1= Ł =e0=\ =e2=[ Then the problem being analyzed is reduced to a problem for a single layer of
inclusions periodical in the direction =e0=[ The two!dimensional analog of this arrangement is a
nonperiodic inclusion _eld located in one line[ For the purpose of an evaluation of the accuracy
of the proposed method we will consider an example which has an analytical solution obtained by
Rubinstein "0876# by the method of the theory of functions of complex variables[

Namely\ let us consider the plane problem of a semi!in_nite regular grid of straight cuts "cracks#
of the length 1l on line L "x1 � 9# at nodes of a semi!in_nite regular grid x0

n � nh
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Fig[ 3[ Normalized components of nonlocal strains onon
ij "x#:"1q"9#scon

ij # vs a layer number for the twentieth!order approxi!
mation of the nonlocal operator Y to dimensionless parameter anor � 1 "solid line is for i j � 00\ dotted line is for i j � 22\
dashed line is for i j � 01\ dotÐdashed line is for i j � 02#[

"n $ Z¦ 0 "9\ 0\ [ [ [ #^ h × 1l#[ In the case considered the method being analyzed in Section 5 is
reduced to the method by Kachanov "0876#\ and we will use the analytical solution for two cracks
presented in the paper mentioned above[ The external _eld s9 is uniaxial tension in the direction
of the normal n_L and has the form s9

ab � s9
9nanb\ s9

9 is a scalar\ a\ b � 0\ 1[ Then the state of each
defect is determined by the _eld s¹ and s¹ abnb � s¹9

9na\ where s¹9
9 is a scalar[ We estimate the relative

change in the stress intensity factor "SIF# kI � KI:K
9
I vs h\ where K9

I � s9
9zpl is the SIF for an

isolated crack in an unbounded plane[ Then in the framework of the hypothesis "H0# we get

Dab
nm � D9

nmnanb\ "D9#−0
nm 0 dnm−"0−dnm#Tnm\ "6[4#

Tnm"x0
n−x0

m# �
z=n−m=h

1l
"z=n−m=h¦1l−z=n−m=h−1l#\ "6[5#

Tm"x0−x0
m# �

="n−m#h−x0 =
zð"n−m#h−x0Ł1−l1

−0\ "6[6#

where n � m\ and x0 ( ðx0
m−l\ x0

m¦lŁ[
In the simple case we adopt the estimation kI � s¹9

9:s
9
9\ following from eqn "5[2#

kI "x0
n2l# � s

�

m�9

D9
nm[ "6[7#
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Fig[ 4[ Changes in normalized SIFs in a semi!in_nite periodic collinear row of cracks vs a crack number[ The solid line
is for kI "6[7#\ the dotted line is for kI "x2

n¦l# "6[8#\ the dashed line is for kI "x2
n−l# "6[8#[ The symbols � and e denote

the exact solution by Rubinstein "0876# for the right and left tips of the boundary crack "x0
n � 9#\ respectively[ "SIFs

are normalized to their values in absence of interactions[ Spacing between cracks is 09) of the crack length[#

A more accurate expression for kI can be constructed with consideration of the fact that the _eld
s¹9

9 � s¹9
9"x0#"x0 $ ðxn−l\ xn¦lŁ# is inhomogeneous in the neighborhood of the defect and equal to

the superposition of the _elds induced by the surrounding cracks]

kI "x2
n2l# � 0¦

0

zpl
s

m$Z¦
n
g

l

−lX
l2j

l3j
Tm"j¦x0

n−x0
m# dj s

�

k�9

D9
mk\ "6[8#

where Z¦
n denotes the set Z¦

:n[ For the _nite number of cracks as well as for the in_nite regular
grid of cracks "x0

n � 9\ 20\ 21\ [ [ [ #\ eqn "6[8# is reduced to the relations analyzed previously by
Kachanov "0876#[ Buryachenko and Parton "0889# obtained the relations similar to "6[8# by a
more approximate method based on the consideration of triply interactive e}ects of cracks[

In Table 2 the exact solution by Koiter "0848# for the in_nite regular grid of cracks
"x0

n � 9\ 20\ 21\ [ [ [ #

kI "2l# �X h
pl

tan 0
pl
h 1 "6[09#

as well as the accurate solution for the boundary crack kI"92l# obtained by Rubinstein "0876# are
compared with the approximate solutions "6[7# and "6[8#[ The agreement of the approximate eqn
"6[8# with the exact ones is satisfactory[ Figure 4 shows that the boundary layer e}ect has a short
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range of in~uence] its impact is practically con_ned to the nearest four cracks[ This particular
example having an analytical solution was considered deliberately for the demonstration of the
high accuracy of proposed method for the estimation of boundary layer e}ects in the degenerate
case of FGMs[ It should be mentioned that SIF depends essentially on the nonhomogeneity of the
e}ective _eld s¹

9
9"x# leading to a signi_cant di}erence of SIFs estimated by the formulae "6[7# and

"6[8#[ In the estimation of both average stresses and e}ective properties of composites with
ellipsoidal inclusions this dependence appears only slightly\ and higher accuracy should be expected
than using the e}ective _eld hypothesis "H0# "at least it was shown in the examples presented in
Tables 0 and 1#[

7[ Conclusion

The solution obtained provides the calculation with reasonable accuracy for local and nonlocal
elastic properties for a whole range of parameters[ The method appears to be simple enough in
both theoretical and computational aspects[ Numerical calculations include only the use of lattice
sums and the solution of well!conditioned linear algebraic systems[

Joint solution of the equilibrium equation\ boundary conditions "1[4# and e}ective constitutive
relations using either "5[09# or "5[01# leads to the estimation of average stresses ðsŁx"x# and the
average strains ðoŁx"x#[ Of course\ the mentioned scheme can be generalized easily to the case\
where instead of each inclusion layer one considers an individual ply consisting of a few inclusion
layers and di}erent plies can be distinguished by the type of lattice periodicity as well as by the
mechanical and geometrical parameters of the inclusions[ In any case the e}ective properties of
either the inclusion layers or the plies depend not only on the individual structure of the layer
considered "as usual one assumes\ see e[g[ Plankensteiner et al[\ 0885# but on the parameters of
other layers[

The obtained relations depend on the values associated with the mean distance between
inclusions\ and do not depend on the other characteristic size\ i[e[ the mean inclusion diameter[
This fact may be explained by the initial use of the hypothesis H0 dealing with homogeneity of the
_eld s¹ "x# inside each inclusion[ In the case of a variable representation of s¹ "x#"x $ vi#\ for instance
in polynomial form\ the mean size of the inclusions will be contained in the nonlocal dependence
of microstresses on the average stress ðsŁx"x#[ Such an improvement was done in eqn "6[8# in
comparison with eqn "6[7#[

It should be mentioned that the e}ective constitutive eqn "4[4# was derived for points xi located
su.ciently far from the boundary of the body 1w[ In so doing the relations developed have been
obtained by the use of the whole!space Green|s function "2[2#[ Then use of nonlocal constitutive
relations "4[4# requires more complicated boundary conditions "see Beran and McCoy\ 0869^
Drugan and Willis\ 0885 for details#^ this question is beyond the scope of the current study[

The proposed method allows us to generalize the model to consider composites with any number
of di}erent components containing inclusions with di}erent size\ shape\ orientation and properties\
coated particles\ cracks\ etc[ However\ more detailed consideration of these facts are beyond the
scope of the current paper[
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